Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Computers, Materials and Continua ; 75(2):3517-3535, 2023.
Article in English | Scopus | ID: covidwho-2319723

ABSTRACT

The COVID-19 outbreak began in December 2019 and was declared a global health emergency by the World Health Organization. The four most dominating variants are Beta, Gamma, Delta, and Omicron. After the administration of vaccine doses, an eminent decline in new cases has been observed. The COVID-19 vaccine induces neutralizing antibodies and T-cells in our bodies. However, strong variants like Delta and Omicron tend to escape these neutralizing antibodies elicited by COVID-19 vaccination. Therefore, it is indispensable to study, analyze and most importantly, predict the response of SARS-CoV-2-derived t-cell epitopes against Covid variants in vaccinated and unvaccinated persons. In this regard, machine learning can be effectively utilized for predicting the response of COVID-derived t-cell epitopes. In this study, prediction of T-cells Epitopes' response was conducted for vaccinated and unvaccinated people for Beta, Gamma, Delta, and Omicron variants. The dataset was divided into two classes, i.e., vaccinated and unvaccinated, and the predicted response of T-cell Epitopes was divided into three categories, i.e., Strong, Impaired, and Over-activated. For the aforementioned prediction purposes, a self-proposed Bayesian neural network has been designed by combining variational inference and flow normalization optimizers. Furthermore, the Hidden Markov Model has also been trained on the same dataset to compare the results of the self-proposed Bayesian neural network with this state-of-the-art statistical approach. Extensive experimentation and results demonstrate the efficacy of the proposed network in terms of accurate prediction and reduced error. © 2023 Tech Science Press. All rights reserved.

2.
Vacunas ; 2023 Mar 02.
Article in English | MEDLINE | ID: covidwho-2298282

ABSTRACT

Introduction and objective: Vaccines are administered worldwide to control on-going coronavirus disease-19 (COVID-19) pandemic caused by SARS-CoV-2. Vaccine efficacy is largely contributed by the epitopes present on the viral proteins and their alteration might help emerging variants to escape host immune surveillance. Therefore, this study was designed to study SARS-CoV-2 Nsp13 protein, its epitopes and evolution. Methods: Clustal Omega was used to identify mutations in Nsp13 protein. Secondary structure and disorder score was predicted by CFSSP and PONDR-VSL2 webservers. Protein stability was predicted by DynaMut webserver. B cell epitopes were predicted by IEDB DiscoTope 2.0 tools and their 3D structures were represented by discovery studio. Antigenicity and allergenicity of epitopes were predicted by Vaxijen2.0 and AllergenFPv.1.0. Physiochemical properties of epitopes were predicted by Toxinpred, HLP webserver tool. Results: Our data revealed 182 mutations in Nsp13 among Indian SARS-CoV-2 isolates, which were characterised by secondary structure and per-residue disorderness, stability and dynamicity predictions. To correlate the functional impact of these mutations, we characterised the most prominent B cell and T cell epitopes contributed by Nsp13. Our data revealed twenty-one epitopes, which exhibited antigenicity, stability and interactions with MHC class-I and class-II molecules. Subsequently, the physiochemical properties of these epitopes were analysed. Furthermore, eighteen mutations reside in these Nsp13 epitopes. Conclusions: We report appearance of eighteen mutations in the predicted twenty-one epitopes of Nsp13. Among these, at least seven epitopes closely matches with the functionally validated epitopes. Altogether, our study shows the pattern of evolution of Nsp13 epitopes and their probable implications.


Introducción y objetivo: Las vacunas se administran a nivel mundial para controlar la pandemia en curso de la enfermedad por coronavirus de 2019 (COVID-19) causada por SARS-CoV-2. A la eficacia de la vacuna contribuyen ampliamente los epítopes presentes en las proteínas virales, y su alteración puede contribuir a que las variantes emergentes se escapen de la vigilancia inmunológica del huésped. Por tanto, este estudio fue diseñado para estudiar la proteína Nsp13 de SARS-CoV-2, sus epítopes y su evolución. Métodos: Se utilizó Clustal Omega para identificar las mutaciones de la proteína Nsp13. La estructura secundaria y la tasa de desorden se predijeron mediante los servidores web CFSSP y PONDR-VSL2. La estabilidad de la proteína fue predicha mediante el servidor web DynaMut. Los epítopes de las células B fueron predichos mediante las herramientas DiscoTope 2.0 de IEDB, y sus estructuras en 3D fueron representadas mediante Discovery Studio.La antigenicidad y alergenicidad de los epítopes fueron predichas mediante Vaxijen2.0 y AlergenFPv.1.0. Las propiedades fisioquímicas de los epítopes fueron predichas mediante Toxinpred, la herramienta del servidor web HLP. Resultados: Nuestros datos revelaron 182 mutaciones en Nsp13 entre los aislados indios de SARS-CoV-2, que fueron caracterizadas mediante las predicciones de la estructura secundaria y la capacidad de desorden por residuo, la estabilidad y la dinamicidad. Para correlacionar el impacto funcional de estas mutaciones, caracterizamos los epítopes más prominentes de las células B y las células T a los que contribuyó Nsp13. Nuestros datos revelaron veintiún epítopes, que exhibieron antigenicidad, estabilidad e interacciones con las moléculas MHC de clase I y clase II. Seguidamente se analizaron las propiedades fisioquímicas de estos epítopes. Además, en estos epítopes de Nsp13 residen ocho mutaciones. Conclusiones: Reportamos el aspecto de ocho mutaciones en los veintiún epítopes de Nsp13 predichos. Entre estos, al menos siete epítopes concuerdan estrechamente con los epítopes funcionalmente validados. En su conjunto, nuestro estudio refleja el patrón evolutivo de los epítopes de Nsp13 y sus implicaciones probables.

3.
Front Immunol ; 14: 1126392, 2023.
Article in English | MEDLINE | ID: covidwho-2302131

ABSTRACT

Because of the rapid mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an effective vaccine against SARS-CoV-2 variants is needed to prevent coronavirus disease 2019 (COVID-19). T cells, in addition to neutralizing antibodies, are an important component of naturally acquired protective immunity, and a number of studies have shown that T cells induced by natural infection or vaccination contribute significantly to protection against several viral infections including SARS-CoV-2. However, it has never been tested whether a T cell-inducing vaccine can provide significant protection against SARS-CoV-2 infection in the absence of preexisting antibodies. In this study, we designed and evaluated lipid nanoparticle (LNP) formulated mRNA vaccines that induce only T cell responses or both T cell and neutralizing antibody responses by using two mRNAs. One mRNA encodes SARS-CoV-2 Omicron Spike protein in prefusion conformation for induction of neutralizing antibodies. The other mRNA encodes over one hundred T cell epitopes (multi-T cell epitope or MTE) derived from non-Spike but conserved regions of the SARS-CoV-2. We show immunization with MTE mRNA alone protected mice from lethal challenge with the SARS-CoV-2 Delta variant or a mouse-adapted virus MA30. Immunization with both mRNAs induced the best protection with the lowest viral titer in the lung. These results demonstrate that induction of T cell responses, in the absence of preexisting antibodies, is sufficient to confer protection against severe disease, and that a vaccine containing mRNAs encoding both the Spike and MTE could be further developed as a universal SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Epitopes, T-Lymphocyte , RNA, Messenger/genetics
4.
Viruses ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: covidwho-2240516

ABSTRACT

SARS-CoV-2 Omicron (B.1.1.529) lineages rapidly became dominant in various countries reflecting its enhanced transmissibility and ability to escape neutralizing antibodies. Although T cells induced by ancestral SARS-CoV-2-based vaccines also recognize Omicron variants, we showed in our previous study that there was a marked loss of T cell cross-reactivity to spike epitopes harboring Omicron BA.1 mutations. The emerging BA.4/BA.5 subvariants carry other spike mutations than the BA.1 variant. The present study aims to investigate the impact of BA.4/BA.5 spike mutations on T cell cross-reactivity at the epitope level. Here, we focused on universal T-helper epitopes predicted to be presented by multiple common HLA class II molecules for broad population coverage. Fifteen universal T-helper epitopes of ancestral spike, which contain mutations in the Omicron BA.4/BA.5 variants, were identified utilizing a bioinformatic tool. T cells isolated from 10 subjects, who were recently vaccinated with mRNA-based BNT162b2, were tested for functional cross-reactivity between epitopes of ancestral SARS-CoV-2 spike and the Omicron BA.4/BA.5 spike counterparts. Reduced T cell cross-reactivity in one or more vaccinees was observed against 87% of the tested 15 non-conserved CD4+ T cell epitopes. These results should be considered for vaccine boosting strategies to protect against Omicron BA.4/BA.5 and future SARS-CoV-2 variants.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , T-Lymphocytes , Mutation , Antibodies, Neutralizing , COVID-19 Vaccines , Epitopes, T-Lymphocyte/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
5.
Immunogenetics ; 75(3): 283-293, 2023 06.
Article in English | MEDLINE | ID: covidwho-2228327

ABSTRACT

Vaccination clearly decreases coronavirus disease 2019 (COVID-19) mortality; however, they also impose selection pressure on the virus, which promotes the evolution of immune escape variants. For example, despite the high vaccination level in especially Western countries, the Omicron variant caused millions of breakthrough infections, suggesting that the highly mutated spike protein in the Omicron variant can escape antibody immunity much more efficiently than the other variants of concern (VOCs). In this study, we investigated the resistance/susceptibility of T helper cell responses that are necessary for generating efficient long-lasting antibody immunity, in several VOCs. By predicting T helper cell epitopes on the spike protein for most common HLA-DRB1 alleles worldwide, we found that although most of high frequency HLA-DRB1 alleles have several potential T helper cell epitopes, few alleles like HLA-DRB1 13:01 and 11:01 are not predicted to have any significant T helper cell responses after vaccination. Using these predictions, a population based on realistic human leukocyte antigen-II (HLA-II) frequencies were simulated to visualize the T helper cell immunity on the population level. While a small fraction of this population had alarmingly little predicted CD4 T cell epitopes, the majority had several epitopes that should be enough to generate efficient B cell responses. Moreover, we show that VOC spike mutations hardly affect T helper epitopes and mainly occur in other residues of the spike protein. These results suggest that lack of long-lasting antibody responses is not likely due to loss of T helper cell epitopes in new VOCs.


Subject(s)
COVID-19 , Epitopes, T-Lymphocyte , Humans , SARS-CoV-2 , HLA-DRB1 Chains , Spike Glycoprotein, Coronavirus , Antibodies , CD4-Positive T-Lymphocytes
6.
Semin Immunol ; 66: 101725, 2023 03.
Article in English | MEDLINE | ID: covidwho-2211448

ABSTRACT

T-cell immunity, mediated by CD4+ and CD8+ T cells, represents a cornerstone in the control of viral infections. Virus-derived T-cell epitopes are represented by human leukocyte antigen (HLA)-presented viral peptides on the surface of virus-infected cells. They are the prerequisite for the recognition of infected cells by T cells. Knowledge of viral T-cell epitopes provides on the one hand a diagnostic tool to decipher protective T-cell immune responses in the human population and on the other hand various prophylactic and therapeutic options including vaccination approaches and the transfer of virus-specific T cells. Such approaches have already been proven to be effective against various viral infections, particularly in immunocompromised patients lacking sufficient humoral, antibody-based immune response. This review provides an overview on the state of the art as well as current studies regarding the identification and characterization of viral T-cell epitopes and approaches of clinical application. In the first chapter in silico prediction tools and direct, mass spectrometry-based identification of viral T-cell epitopes is compared. The second chapter provides an overview of commonly used assays for further characterization of T-cell responses and phenotypes. The final chapter presents an overview of clinical application of viral T-cell epitopes with a focus on human immunodeficiency virus (HIV), human cytomegalovirus (HCMV) and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), being representatives of relevant viruses.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , Epitopes, T-Lymphocyte , SARS-CoV-2 , Histocompatibility Antigens Class I
7.
Infection, Epidemiology and Microbiology ; 8(3):259-276, 2022.
Article in English | Scopus | ID: covidwho-2207019

ABSTRACT

Aims: A short sequence of viral protein/ peptide could be used as a potential vaccine to treat coronavirus. Considering all variants of concern (VOC), designing a peptide vaccine for severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) is a challenging task for scientists. Materials & Methods: In this study, an epitope-containing vaccine peptide in nonstructural protein 4 (nsp4) of SARS-CoV-2 was predicted. Using a modified method for both B and T cell epitope prediction (verified by molecular docking studies), linear B and T cell epitopes of nsp4 protein were predicted. Predicted epitopes were analyzed with population coverage calculation and epitope conservancy analysis. Findings: The short peptide sequence74QRGGSYTNDKA84 was selected as B-cell epitope by considering the scores of surface accessibility, hydrophilicity, and beta turn for each amino acid residue. Similarly, the peptide sequences 359 FLAHIQWMV367 and359FLAHIQWVMFTPLV373 were predicted as T cell epitopes for MHC-I and MHC-II molecules. These two potential epitopes could favor HLA-A*02:01 and HLA-DRB*01:01 as MHC allelic proteins with the lowest IC50 values, respectively. No amino acid mutations were observed in GISAID (global initiative on sharing all influenza data) database for alpha, beta, gamma, and delta variants of concerns. Among seven amino acid point mutations in nsp4 protein of omicron variant, none were present in the peptide sequences of the predicted epitopes. Conclusion: Short peptide sequences could be predicted as vaccines to prevent infections caused by coronavirus variants of concerns. © 2022, TMU Press.

8.
Cell Syst ; 14(1): 72-83.e5, 2023 01 18.
Article in English | MEDLINE | ID: covidwho-2165139

ABSTRACT

The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8+ T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , Epitopes, T-Lymphocyte , Antigen Presentation , SARS-CoV-2 , Ligands , Receptors, Antigen, T-Cell , HLA Antigens
9.
Arch Med Res ; 53(7): 694-710, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2095059

ABSTRACT

BACKGROUND: The mutations in SARS-CoV-2 variants of concern (VOC) facilitate the virus' escape from the neutralizing antibodies induced by vaccines. However, the protection from hospitalization and death is not significantly diminished. Both vaccine boosters and infection improve immune responses and provide protection, suggesting that conserved and/or cross-reactive epitopes could be involved. While several important T- and B-cell epitopes have been identified, mainly in the S protein, the M and N proteins and their potential cross-reactive epitopes with other coronaviruses remain largely unexplored. AIMS: To identify and map new potential B- and T-cell epitopes within the SARS-CoV-2 S, M and N proteins, as well as cross-reactive epitopes with human coronaviruses. METHODS: Different bioinformatics tools were used to: i) Identify new and compile previously-reported B-and T-cell epitopes from SARS-CoV-2 S, M and N proteins; ii) Determine the mutations in S protein from VOC that affect B- and T-cell epitopes, and; iii) Identify cross-reactive epitopes with coronaviruses relevant to human health. RESULTS: New, potential B- and T-cell epitopes from S, M and N proteins as well as cross-reactive epitopes with other coronaviruses were found and mapped within the proteins' structures. CONCLUSION: Numerous potential B- and T-cell epitopes were found in S, M and N proteins, some of which are conserved between coronaviruses. VOCs present mutations within important epitopes in the S protein; however, a significant number of other epitopes remain unchanged. The epitopes identified here may contribute to augmenting the protective response to SARS-CoV-2 and its variants induced by infection and/or vaccination, and may also be used for the rational design of novel broad-spectrum coronavirus vaccines.


Subject(s)
COVID-19 , Epitopes, T-Lymphocyte , Humans , Epitopes, T-Lymphocyte/genetics , Computational Biology , SARS-CoV-2
10.
Front Bioinform ; 1: 622992, 2021.
Article in English | MEDLINE | ID: covidwho-2089804

ABSTRACT

Predictive models for vaccine design have become a powerful and necessary resource for the expeditiousness design of vaccines to combat the ongoing SARS-CoV-2 global pandemic. Here we use the power of these predicted models to assess the sequence diversity of circulating SARS-CoV-2 proteomes in the context of an individual's CD8 T-cell immune repertoire to identify potential. defined regions of immunogenicity. Using this approach of expedited and rational CD8 T-cell vaccine design, it may be possible to develop a therapeutic vaccine candidate with the potential for both global and local coverage.

11.
Viruses ; 14(11)2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2081985

ABSTRACT

Reports on T-cell cross-reactivity against SARS-CoV-2 epitopes in unexposed individuals have been linked with prior exposure to the human common cold coronaviruses (HCCCs). Several studies suggested that cross-reactive T-cells response to live attenuated vaccines (LAVs) such as BCG (Bacillus Calmette-Guérin), OPV (Oral Polio Vaccine), and MMR (measles, mumps, and rubella) can limit the development and severity of COVID-19. This study aims to identify potential cross-reactivity between SARS-CoV-2, HCCCs, and LAVs in the context of T-cell epitopes peptides presented by HLA (Human Leukocyte Antigen) alleles of the Indonesian population. SARS-CoV-2 derived T-cell epitopes were predicted using immunoinformatics tools and assessed for their conservancy, variability, and population coverage. Two fully conserved epitopes with 100% similarity and nine heterologous epitopes with identical T-cell receptor (TCR) contact residues were identified from the ORF1ab fragment of SARS-CoV-2 and all HCCCs. Cross-reactive epitopes from various proteins of SARS-CoV-2 and LAVs were also identified (15 epitopes from BCG, 7 epitopes from MMR, but none from OPV). A majority of the identified epitopes were observed to belong to ORF1ab, further suggesting the vital role of ORF1ab in the coronaviruses family and suggesting it as a candidate for a potential universal coronavirus vaccine that protects against severe disease by inducing cell mediated immunity.


Subject(s)
COVID-19 , Common Cold , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Humans , SARS-CoV-2/genetics , Epitopes, T-Lymphocyte , Middle East Respiratory Syndrome Coronavirus/genetics , Vaccines, Attenuated , COVID-19 Vaccines , COVID-19/prevention & control , Alleles , BCG Vaccine , Indonesia/epidemiology , Spike Glycoprotein, Coronavirus/genetics
12.
Int Immunopharmacol ; 112: 109224, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2076214

ABSTRACT

In the worrisome scenarios of various waves of SARS-CoV-2 pandemic, a comprehensive bioinformatics pipeline is essential to analyse the virus genomes in order to understand its evolution, thereby identifying mutations as signature SNPs, conserved regions and subsequently to design epitope based synthetic vaccine. We have thus performed multiple sequence alignment of 4996 Indian SARS-CoV-2 genomes as a case study using MAFFT followed by phylogenetic analysis using Nextstrain to identify virus clades. Furthermore, based on the entropy of each genomic coordinate of the aligned sequences, conserved regions are identified. After refinement of the conserved regions, based on its length, one conserved region is identified for which the primers and probes are reported for virus detection. The refined conserved regions are also used to identify T-cell and B-cell epitopes along with their immunogenic and antigenic scores. Such scores are used for selecting the most immunogenic and antigenic epitopes. By executing this pipeline, 40 unique signature SNPs are identified resulting in 23 non-synonymous signature SNPs which provide 28 amino acid changes in protein. On the other hand, 12 conserved regions are selected based on refinement criteria out of which one is selected as the potential target for virus detection. Additionally, 22 MHC-I and 21 MHC-II restricted T-cell epitopes with 10 unique HLA alleles each and 17 B-cell epitopes are obtained for 12 conserved regions. All the results are validated both quantitatively and qualitatively which show that from genetic variability to synthetic vaccine design, the proposed pipeline can be used effectively to combat SARS-CoV-2.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , COVID-19 Vaccines/genetics , Computational Biology , Phylogeny , COVID-19/prevention & control , Immunogenicity, Vaccine , Vaccines, Synthetic/genetics , Amino Acids
13.
Biochemistry (Mosc) ; 87(7): 590-604, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2053145

ABSTRACT

Peptides are widely used for the diagnostics, prevention, and therapy of certain human diseases. How useful can they be for the disease caused by the SARS-CoV-2 coronavirus? In this review, we discuss the possibility of using synthetic and recombinant peptides and polypeptides for prevention of COVID-19 via blocking the interaction between the virus and its main receptor ACE2, as well as components of antiviral vaccines, in particular, against new emerging virus variants.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Antiviral Agents/therapeutic use , Humans , Peptides/therapeutic use , SARS-CoV-2
14.
Vaccines (Basel) ; 10(10)2022 Sep 24.
Article in English | MEDLINE | ID: covidwho-2044044

ABSTRACT

The COVID-19 pandemic has caused extensive loss of lives and economic hardship. In response, infectious disease experts and vaccine developers promptly responded by bringing forth candidate vaccines, some of which have been listed in the World Health Organization's Emergency Use Listing. Notwithstanding the diverse worldwide population genetics, the vaccines thus far developed are generic in nature for use worldwide. Differences in the human leukocyte antigen (HLA) in different populations, variation of the T cell epitopes, and the propensity of SARS-CoV-2 genetic mutations left room for improvement of the vaccines. Here, we discussed the implications of COVID-19 vaccination and SARS-CoV-2 infection by taking into consideration SARS-CoV-2 mutations, T cell epitopes, risk factors, and current platforms of candidate vaccines based on the HLA types that are commonly present in Peninsular Malaysia Chinese, Indian, and Malay populations. The HLA types associated with protection against and susceptibility to severe SARS-CoV-2 infection were identified based on reported case-control and cohort studies. The relevance of including the non-spike SARS-CoV-2 proteins in the future COVID-19 vaccines is also highlighted. This review is meant to trigger researchers to acknowledge the importance of investigating the possible relationships between the HLA haplotype and the SARS-CoV-2 strains circulating in different populations.

15.
Ther Adv Vaccines Immunother ; 10: 25151355221115011, 2022.
Article in English | MEDLINE | ID: covidwho-2009344

ABSTRACT

While antibodies garner the lion's share of attention in SARS-CoV-2 immunity, cellular immunity (T cells) may be equally, if not more important, in controlling infection. Both CD8+ and CD4+ T cells are elicited earlier and are associated with milder disease, than antibodies, and T-cell activation appears to be necessary for control of infection. Variants of concern (VOCs) such as Omicron have escaped the neutralizing antibody responses after two mRNA vaccine doses, but T-cell immunity is largely intact. The breadth and patient-specific nature of the latter offers a formidable line of defense that can limit the severity of illness, and are likely to be responsible for most of the protection from natural infection or vaccination against VOCs which have evaded the antibody response. Comprehensive searches for T-cell epitopes, T-cell activation from infection and vaccination of specific patient groups, and elicitation of cellular immunity by various alternative vaccine modalities are here reviewed. Development of vaccines that specifically target T cells is called for, to meet the needs of patient groups for whom cellular immunity is weaker, such as the elderly and the immunosuppressed. While VOCs have not yet fully escaped T-cell immunity elicited by natural infection and vaccines, some early reports of partial escape suggest that future VOCs may achieve the dreaded result, dislodging a substantial proportion of cellular immunity, enough to cause a grave public health burden. A proactive, rather than reactive, solution which identifies and targets immutable sequences in SARS-CoV-2, not just those which are conserved, may be the only recourse humankind has to disarm these future VOCs before they disarm us.

16.
Vaccines (Basel) ; 10(7)2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-1939063

ABSTRACT

The COVID-19 pandemic emerged in 2020 and has caused an unprecedented burden to all countries in the world. SARS-CoV-2 continues to circulate and antigenically evolve, enabling multiple reinfections. To address the issue of the virus antigenic variability, T cell-based vaccines are being developed, which are directed to more conserved viral epitopes. We used live attenuated influenza vaccine (LAIV) virus vector to generate recombinant influenza viruses expressing various T-cell epitopes of SARS-CoV-2 from either neuraminidase (NA) or non-structural (NS1) genes, via the P2A self-cleavage site. Intranasal immunization of human leukocyte antigen-A*0201 (HLA-A2.1) transgenic mice with these recombinant viruses did not result in significant SARS-CoV-2-specific T-cell responses, due to the immunodominance of NP366 influenza T-cell epitope. However, side-by-side stimulation of peripheral blood mononuclear cells (PBMCs) of COVID-19 convalescents with recombinant viruses and LAIV vector demonstrated activation of memory T cells in samples stimulated with LAIV/SARS-CoV-2, but not LAIV alone. Hamsters immunized with a selected LAIV/SARS-CoV-2 prototype were protected against challenge with influenza virus and a high dose of SARS-CoV-2 of Wuhan and Delta lineages, which was confirmed by reduced weight loss, milder clinical symptoms and less pronounced histopathological signs of SARS-CoV-2 infection in the lungs, compared to LAIV- and mock-immunized animals. Overall, LAIV is a promising platform for the development of a bivalent vaccine against influenza and SARS-CoV-2.

17.
Viruses ; 14(7)2022 07 19.
Article in English | MEDLINE | ID: covidwho-1939026

ABSTRACT

Omicron BA.1 variant can readily infect people with vaccine-induced or naturally acquired SARS-CoV-2 immunity facilitated by escape from neutralizing antibodies. In contrast, T-cell reactivity against the Omicron BA.1 variant seems relatively well preserved. Here, we studied the preexisting T cells elicited by either vaccination with the mRNA-based BNT162b2 vaccine or by natural infection with ancestral SARS-CoV-2 for their cross-reactive potential to 20 selected CD4+ T-cell epitopes of spike-protein-harboring Omicron BA.1 mutations. Although the overall memory CD4+ T-cell responses primed by the ancestral spike protein was still preserved generally, we show here that there is also a clear loss of memory CD4+ T-cell cross-reactivity to immunodominant epitopes across the spike protein due to Omicron BA.1 mutations. Complete or partial loss of preexisting T-cell responsiveness was observed against 60% of 20 nonconserved CD4+ T-cell epitopes predicted to be presented by a broad set of common HLA class II alleles. Monitoring such mutations in circulating strains helps predict which virus variants may escape previously induced cellular immunity and could be of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/immunology , COVID-19/prevention & control , Epitopes, T-Lymphocyte/genetics , Humans , Membrane Glycoproteins , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Viral Envelope Proteins/genetics
18.
Front Immunol ; 13: 891524, 2022.
Article in English | MEDLINE | ID: covidwho-1933678

ABSTRACT

Since the start of the COVID-19 pandemic, mutations have led to the emergence of new SARS-CoV-2 variants, and some of these have become prominent or dominant variants of concern. This natural course of development can have an impact on how protective the previously naturally or vaccine induced immunity is. Therefore, it is crucial to understand whether and how variant specific mutations influence host immunity. To address this, we have investigated how mutations in the recent SARS-CoV-2 variants of interest and concern influence epitope sequence similarity, predicted binding affinity to HLA, and immunogenicity of previously reported SARS-CoV-2 CD8 T cell epitopes. Our data suggests that the vast majority of SARS-CoV-2 CD8 T cell recognized epitopes are not altered by variant specific mutations. Interestingly, for the CD8 T cell epitopes that are altered due to variant specific mutations, our analyses show there is a high degree of sequence similarity between mutated and reference SARS-CoV-2 CD8 T cell epitopes. However, mutated epitopes, primarily derived from the spike protein, in SARS-CoV-2 variants Delta, AY.4.2 and Mu display reduced predicted binding affinity to their restriction element. These findings indicate that the recent SARS-CoV-2 variants of interest and concern have limited ability to escape memory CD8 T cell responses raised by vaccination or prior infection with SARS-CoV-2 early in the pandemic. The overall low impact of the mutations on CD8 T cell cross-recognition is in accordance with the notion that mutations in SARS-CoV-2 are primarily the result of receptor binding affinity and antibody selection pressures exerted on the spike protein, unrelated to T cell immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte/genetics , Humans , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
19.
Front Immunol ; 13: 812393, 2022.
Article in English | MEDLINE | ID: covidwho-1858006

ABSTRACT

CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.


Subject(s)
Influenza Vaccines , Influenza, Human , Australia , CD8-Positive T-Lymphocytes , Chromatography, Liquid , Epitopes, T-Lymphocyte , HLA Antigens , Histocompatibility Antigens Class I , Histocompatibility Antigens Class II , Humans , Tandem Mass Spectrometry
20.
Front Immunol ; 13: 832106, 2022.
Article in English | MEDLINE | ID: covidwho-1809389

ABSTRACT

Coronavirus disease 2019 (COVID-19) is the most devastating pandemic of the century, which is still far from over. The remarkable success of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is the working hope, but the evolving variants are the huge concern that can turn the tide. Potential immune escape mutations (PIEMs) in the past and circulating variants were not studied at large scale (all available data). Hence, the conservation of antigenic determinants (epitopes) was analyzed in all available sequences of SARS-CoV-2 according to time (months), proteins, hosts, and variants. Numerous highly conserved B- and T-cell epitopes were identified in 24 proteins of SARS-CoV-2. A decrease in the conservation of epitopes with time was observed in almost all proteins, which was more rapid in neutralizing epitopes. Delta variant still has the highest PIEM in the circulating strains, which pose threat to the effectiveness of current vaccines. The inclusion of identified, highly conserved, and important epitopes in subunit vaccines can increase vaccine effectiveness against evolving variants. Trends in the conservation of epitopes in different proteins, hosts, and variants with time may also help to inspire the counter measure against the current pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes, T-Lymphocyte/genetics , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit
SELECTION OF CITATIONS
SEARCH DETAIL